| Login

Resource Library

Keyword
GO
Categories










Industries














78 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • EDA
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Structures
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
TGM Helps Customers Go Faster to Market with Topology Optimization
TGM Lightweight Solutions is an engineering services company with a focus on lightweight design and strategic weight optimization for aircraft, rail cars, road vehicles, and marine vessels. For a recent customer project requiring weight reduction of a railway container, TGM used Altair HyperWorks to achieve the target weight. Topology optimization helped identify the weight savings potential, resulting in material and cost savings, and a 20% reduction in weight while meeting tight development schedules.

Ford Enhances Manufacturing Efficiency
Sheet metal stamping is fundamental to the automotive manufacturing industry. A vast array of different tool, die, and process combinations are employed to create an equally diverse array of components. Traditionally, identifying the optimum approach for each part has been a labor intensive and time-consuming task that requires engineering teams with high levels of skill and experience.

This case study demonstrates how Altair Knowledge Studio, a general-purpose data analytics tool, can enable engineering managers and data analysts to deliver clear and quantifiable benefits in the manufacturing domain. For Ford, this is reflected in dramatic improvements in the speed and efficiency with which the best possible sheet metal stamping processes were selected.

BOTTPOWER Designs Lightweight Bracket for Motorbike
BOTT stands for “Battle of the Twins,” a racing category for motorbikes with two-cylinder four stroke engines.

Bottpower is a Spanish motorsport engineering company located in Valencia. They specialize in designing and building custom motorbikes for racing and street use. They design and build parts, systems, and prototypes for other companies.

A project challenge at Bottpower was to design a lightweight stay bracket for their motorbike that could withstand the main and aerodynamic loads. The goal was finding the optimal weight and stiffness ratio to reduce weight while ensuring safety measures. All of this had to be done quickly in order to arrive on time at Addit3D, Spain's most important 3D-print fair, to showcase the bike. The optimal design for aerodynamic loads was found using Altair software.


Reduction of Moving Masses – Streamlined Design for Improved Engine Performance
To expand the rpm range of a motorcycle engine, a new type of rocker arm with lower inertia was needed at KTM. The new rocker arm was required to have the same, or better stiffness and deformation level as the previous design. KTM used Altair HyperWorks™ for nonlinear topology optimization and nonlinear structural analysis to develop the new rocker arm. Thanks to this, the component inertia could be reduced by 15 percent, component mass was reduced by 21 percent, and the stiffness increased by 14 percent which lead to an extension of the rotational speed by 150-200 rpm.


Going Off-Road with Michigan Baja Racing
Michigan Baja Racing (MBR) is a collegiate race team in the North American Baja SAE intercollegiate competition. The team designs, builds, and tests a new single-seater off-road race car from scratch every year to compete against hundreds of other teams across the United States. The competition consists of a design presentation and other static events. The main dynamic events are acceleration, maneuverability, hill climb, suspension and traction (S&T), and a four-hour endurance race.

Enabling EV Excellence – Simulation Helps Rimac Improve Structural Design of Innovative Hypercar
Rimac Automobili’s main challenge has been to design a monocoque as a single carbon fiber part with an unprecedented size. Hence, in the development of the monocoque, the main topic to manage was the material, a lightweight, carbon fiber reinforced with epoxy resin. As this carbon fiber is an orthotropic and brittle material, its representation in a finite element (FE) material card is very difficult. To meet this challenge the company introduced Altair HyperWorks™ into their development process.

PATAC
PATAC needed to develop an efficient CAE simulation management platform to accommodate
their changing needs and accelerate digital growth.

Renault Nissan Mitsubishi Alliance Uses Altair SimSolid to Bring Vehicles Chassis Faster onto the Road
Renault Nissan Mitsubishi Alliance is a French-Japanese strategic partnership between the automobile manufacturers Renault (based in France), Nissan (based in Japan) and Mitsubishi Motors (based in Japan). Today, the automotive group has 122 manufacturing plants worldwide with nearly 450,000 employees controlling ten major brands: Renault, Nissan, Mitsubishi, Infiniti, Renault Samsung, Dacia, Alpine, Datsun, Venucia, and Lada. The ambition of the alliance is to offer autonomous drive, connectivity features, and services on a wide range of affordable vehicles. As part of the Renault Chassis Le Mans plant, which is building car-to-ground connecting components for the Renault Group and for the Alliance, the CTC Chassis Technical Center is a CAD engineering center where 350 engineers and technicians are working with a focus on testing and validation. Renault has been using SimSolid to perform simulations to develop lighter chassis faster.

Extended Interview: Royal Enfield Discuss the Deployment of the Altair HyperWorks Unlimited Appliance
An extended interview with Royal Enfield, the world's oldest motorcycle brand in continuous production, as they discuss the deployment of the Altair HyperWorks Unlimited Appliance. Rod Giles gives insight into the company's existing HPC infrastructure and explains why the fully managed Altair Applicance made sense for them.

Royal Enfield Discuss the Deployment of the Altair HyperWorks Unlimited Appliance
Royal Enfield, the world's oldest motorcycle brand in continuous production, discuss the deployment of the Altair HyperWorks Unlimited Appliance. Rod Giles gives insight into the company's existing HPC infrastructure and explains why the fully managed Altair Applicance made sense for them.

Optimizing a Solar Car for Endurance and Energy Efficiency
Using Altair simulation software, Gurit supports Western Sydney University's Bridgestone World Solar Challenge team, helping them design the most efficient and aerodynamic
car possible, while ensuring driver safety
and adhering to class rules.

BMW Motorrad
By automating the crankshaft modeling process using Altair SimLab, BMW Motorrad, the motorcycle division of BMW was able to significantly reduce their model creation time, and enable accuracy in budgetary forecasting and planning. As a result of making it an inhouse resource, they were able to gain flexibility and consistency in model quality, with a high-degree of efficiency with iterations.

E-motor Design using Multiphysics Optimization
Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.



The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.


From Die Design to Defect-Free Castings: Shiva Tool Tech Achieves 80% Time Reduction with Altair Inspire Cast
Shiva Tool Tech is an automotive manufacturing focused, industrial powerhouse based in Pune, India. With over 25 years of experience in designing and manufacturing of gravity die casting (GDC), low-pressure die casting (LPDC), high-pressure die casting (HPDC) Dies, the company supports customers from manufacturing process design to the production stage. Manufacturing processes include milling, drilling, hardening, grinding, Computer Numerical Control (CNC) machining, Electrical Discharge Machining (EDM), inspection and polishing to get the final assembly of the casting die.

MDGo
Statistics on fatal vehicle accidents show that victims most often do not die during or right after a crash, but in the hours and days afterwards, with research indicating that up to 44 percent of people who died in car crashes could possibly have been saved if first responders and hospitals had
real-time, detailed information about the victim’s injuries. In an effort to transform data received from the car sensors into meaningful information about the victim's injuries, the MDGo team began applying crash simulation using Altair Radioss™. The Altair Startup program was a major help to the Israeli startup company in creating a system which automatically alerts first responders and hospitals of accidents, and reports on potential injuries.


Griiip
Israeli motorsport company Griiip has designed a new, fast and professional race car that combines efficiency in racing with a competitive purchase price and low running costs, to make it more affordable. By harnessing the power of data, Griiip has created the first smart connected race car – the G1 – and with it, an entirely new racing series. Accessing the software via Altair's new Startup Program, Griiip engineers employ several products from the Altair HyperWorks™ suite, among these Altair Radioss™ for crash simulation, Altair OptiStruct™ for structural optimization, general FE analysis as well as Altair HyperMesh™ and Altair HyperView™ for pre- and post-processing tasks in the development of race cars.

Gulplug
French startup Gulplug, located in Grenoble, France, has set out to revolutionize plug and charging technology used in today's electric and hybrid vehicles. To create new products and to drive innovation in the market, Gulplug is using Altair Flux™ and the Altair startup program. Flux helped Gulplug to model and create an innovative, clean, automatically self-plugging, magnetic based charging solution for electric vehicles.

Imperial Auto has Successfully Validated the Contact Pressure for O-Ring by Contact Analysis using Altair OptiStruct™ Solution
Established in the year 1969, Imperial Auto is one of the biggest integrated manufacturers of ‘Fluid Transmission Products (FTPs) in the world. The company has eight dedicated manufacturing and assembly plants in India. The grand vision of the company’s top management can be easily gauged from the strategic and technical alliances that Imperial has formed with major international players in their industry.

Pranav Vikas Achieves 17% Material Savings with Light Weight and Optimised Product Designs using Altair HyperWorks™ Solutions
With over 2 decades of experience in manufacturing Aluminum Heat-exchangers such as Condensers, Evaporators, Heaters, Radiators, Oil Coolers, IHX and Roof AC units, Pranav Vikas (India) Private Limited (PVL) today is one of the largest and most diversified Heat-exchanger manufacturers in India. The company currently is the only fully integrated Condenser manufacturer in India with their own state-of-the-art Micro-tube facility at Ranjangaon, Pune. PVL serves leading global and Indian Original Equipment Manufacturers (OEMs) in the Passenger, Commercial, and Off-road vehicle segments.

Andron Handling
Andron Handling needed to assess the strength of the welded fabrication and vertical clamping arms for both lifting and clamping loads. In previous analysis of this type in Altair SimSolid™, they would have removed the wheels from the model and applied reaction forces at the bottom of each of the clamp arms. In this case, Andron used a different approach that would not have been possible with previous FEA toolsets.

F.tech R&D North America
F.tech is a Tier-1 automotive systems supplier, headquartered in Japan. To help the CAE team at F.tech R&D North America overcome tedious challenges related to model build and geometry preparation for weld creation, Altair developed a customized solution. Developed using Altair’s Model Mesher Director (MMD) PSO (Packaged Solution Offering), the F.tech -Pre-processing Automation Solution (F.tech-PAS) is a streamlined toolset which aids F.tech engineers in CAE meshing and assembly from CAD to solver deck.

Fallbrook Technologies
Traction-based, patented NuVinci® transmission is a continuously variable planetary (CVP) technology enabling performance and efficiency improvements for machines that use an engine, pump, motor, or geared transmission systems. Fallbrook Technologies has been working on improving oil flow inside the NuVinci products as it affects the transmission’s efficiency, durability, power, capacity, and cost. Altair worked with Amazon Web Services (AWS), a secure cloud services platform, to provide an integrated solution to Fallbrook including advanced GPU hardware, high-performance computing (HPC) and the nanoFluidX software through industry-leading workload management and job scheduler Altair PBS Professional™.

Novum: University of Michigan Participates in Solar Car Challenges Around the World
See how Altair's Software is used to get University of Michigan's solar car, Novum, to the next level to compete in the World Solar Challenge in Australia and the American Solar Challenge - crossing an entire continent in both cases just on the power of the sun alone.

Minimising Interior Noise in Electric Vehicles
National Electric Vehicle Sweden (NEVS) leverages use of the Altair Squeak and Rattle Director in identifying and minimising risks of interior noise in electric vehicles.

Developing More Accurate and Reliable Vehicle Component Models in Less Time with Software Automation at Changan Automobile
Pre-processing vehicle models is time consuming and complex, with many opportunities for error if done manually. Altair build a custom software solution to automate most of the pre-processing tasks.

Sujan CooperStandard Achieves Lightweighting and Performance Targets with Altair
Sujan CooperStandard manufactures (anti-vibration) NVH products for leading automotive companies. Currently, the automotive industry is under extreme pressure because of environmental norms and has to adhere to stringent government policies related to pollution control and one of the simplest ways to address these is to optimize designs and reduce weight of products and components. They began using Altair HyperWorks on the on the recommendation of their joint venture partner CooperStandard. The team decided to improvise design of their Torsion Vibration Damper using Altair solutions like solidThinking Inspire to optimize designs of the brackets and OptiStruct for structural integrity of the designs. Altair solutions have helped Sujan CooperStandard get their product designs right the first time and consistently meet their time, cost and quality targets.

Addressing Design Development Challenges Through Simulation Driven Platform
Automotive suppliers are facing many challenges in having in-house simulation capabilities compared to that of OEM’s. One of the ways to overcome these challenges is to invest in simulation technologies that require an affordable initial investment, the ownership cost of which is low, the codes are reliable & proven, and the suite of tools provide suppliers access to a broad range of solvers (a true multi-physics environment) helping them pick and choose the solvers as per their simulation requirements. In the early stage of in-house simulation implementation at Endurance Technologies, HyperWorks was being adopted primarily for pre and post processing due to its extraordinary FE modeling solutions. With constant support, Altair team has helped Endurance in exploring and implementing various HyperWorks solvers at Endurance Technologies.

Less Interior Squeak and Rattle Noise Using a Simulation Driven Design Approach
In the development of new vehicles, the PSA Group aimed to detect Squeak and Rattle (S&R) problems before availability of physical testing. This led to a collaboration between PSA’s method development engineering team and Altair’s domain experts.

U-Shin Ltd.
U-Shin is currently employing Altair Inspire Cast to perform testing and optimization to create sound, redesigned automotive parts.U-Shin has seen significant time and cost savings by utilizing Altair Inspire Cast.

Mando Softtech India Achieves Greater Simulation Accuracy with Altair HyperWorks®
As Manufacturers of Automotive Components such as Chassis and Brakes, Mando Softtech India has to ensure that they maintain highest performance and quality standards of the products they develop. Implementation of Altair HyperWorks solutions has helped them considerably reduce their product development time and costs, while augmenting product quality. Their overall development time was reduced by up to 30 to 40%.

ICAT Achieves Robust Structural Integrity of their Automotive Components using Altair HyperWorks®
The International Centre for Automotive Technology (ICAT) is an automotive testing and R&D centre. In their pursuit to carve a niche as a one-stop solution for the automotive industry’s needs in the areas of product design, testing and validation, the ICAT team required a very advanced suite of software solutions. They needed a software suite that would save them time, money and also help in all phases of product development. The Altair software suite has greatly helped the team in providing timely and appropriate solutions to their clients.

Daimler
Integrating antennas in windscreens has become popular due to the enhanced aesthetics and the increased antenna surface area that enables improved reception. However, the design of such antennas is a complex procedure. Antenna systems contain different antennas with mutual coupling, making it very inefficient and time consuming to optimize the FM-, DAB-, RKE- and TV antennas independently. Wanting to make the optimization process of its multi-port antenna more efficient, Daimler turned to Altair for assistance.

Ankers
Ankers performed co-simulation using a combined multibody and brake systems model in MotionView and Activate to generate more accurate results to analyze thermal and other effects on braking.

Simulation Speeds Roll Cage Design
Australian company relies on virtual tools to test the roll cage structures that keep motorsports drivers safe.

National Electric Vehicle Sweden (NEVS)
Due to a long-standing relationship with Altair and its HyperWorks suite of simulation solutions, NEVS approached Altair ProductDesign to see if the interior quality issue could be tackled with simulation. To perform the project, Altair ProductDesign worked on site alongside NEVS Interior
Simulation Team to implement Altair’s Squeak and Rattle Director (SnRD).

APWorks Light Rider: Optimization Process
First 3D-printed Motorcycle by APWorks (Airbus Group) called Lightrider. Altair's software OptiStruct was used for inspiration of the organic structure of the motorcycle.

  •  
CalsonicKansei North America
CKNA contacted Altair ProductDesign for training on the Squeak and Rattle Director, which led to more in-depth consultation on the squeak and rattle methodologies, ultimately saving the company time and money by helping them identify detrimental issues early on and by improving vehicle quality.

LEIBER Group
LEIBER Group, which specializes in developing lightweight metal components, applied topology optimization to determine the ideal shape for a vehicle suspension beam, resulting in mass savings of over 50%

Triton Bikes
Triton Bikes utilized Altair Inspire to Increase performance, decrease the overall weight, and simplify manufacturability of a 3D printed custom bike rear yoke.

Mubea Relies on HyperWorks Unlimited for Automotive Component Design and Production
In performing lightweighting projects for large OEMs, Mubea is the only provider worldwide who delivers innovations of tailor-rolled blanks (TRB) which are ideal for not only vehicle body structural but also for suspension components that encounter different loads across their length. The Mubea team has worked collaboratively with Altair for over 6 years. With HWUL-PA, they are able to optimize their TRB applications more efficiently than ever before, including expanded capabilities for unlimited design exploration, reduced lead time and major cost savings over traditional hardware/software purchase

PSA Groupe Discusses the Simulation of Squeak and Rattle Noise in its Vehicles
In this interview, Sebastien Gourg, CAE Methods, Expertise and Support Engineer from PSA Groupe gives us insight into his experience of working with Altair ProductDesign during the implementation and customization of the Squeak and Rattle Director (SnRD). The SnRD is used within PSA vehicle development programs today to help to quickly identify and eradicate unwanted noise from interiors, while cutting down the need for costly physical testing.

CEVT Discuss Multi-Disciplinary Optimization for Vehicle Development
China Euro Vehicle Technology (CEVT) discuss the application of Multi-disciplinary Optimization (MDO) during the development of new automotive vehicle architectures.

  •  
Gator Motorsports
Gator Motorsports utilized Inspire to redesign its brake pedal, as well as suspension bell cranks. This resulted in increased stiffness and a reduction of weight.

APWorks Choses OptiStruct for Topology Optimisation for the 3D Printed Light Rider
Despite its skeletal appearance, the Light Rider is an extremely strong yet lightweight electric motorcycle designed by Airbus subsidiary APWorks as a showcase of what’s possible when OptiStruct's topology optimisation is coupled with metallic 3D printing.


Written by Tanya Weaver from DEVELOP3D.

Achieving Superior Crash Performance for the Souest DX7
Analysis and optimization to improve crash performance while reducing reliance on physical tests.

Optimization-driven Product Development at Volvo
Harald Hasselblad (PhD) - Senior Analysis Engineer at Volvo Car Group Sweden - talks about introducing an Optimization Culture Arena to support simulation driven development in his company.

Hyundai Mobis Automotive Group Improves the EMC Analysis Process from 2D to 3D Using FEKO for Shielding Effectiveness Simulation
To analyze and optimize the shielding effectiveness of the housing in an Around View Monitor (AVM) while meeting EMC requirements, Hyundai MOBIS automotive group improves the Electromagnetic Compatibility Analysis (EMC) process from 2D to 3D using FEKO for shielding effectiveness simulation

Ford Battery Group Adopts Radioss Cut Methodology
In order to improve the simulation and accuracy of a high fidelity battery CAE model. Ford has turned to the cut methodology available in Radioss.

Bremar Automotion uses Altair Radioss to Design & Certify FIA Motorsport Roll Cages
“The Altair product is it for us in terms of simulation. That’s all we use. It’s great to be able to show such good correlation between the simulations and physical testing, and to have confidence in not only our approach, but also the Altair product as well. It’s a great product for us to be using, and the test results and these images just back that up for us.”

Brett Longhurst, Managing Director, Bremar Automotion

Optimized Design for 3D Printed Valve Block Sheds Weight, Size and Gains Improved Performance
Not every component or product is suitable
for 3D printing, depending on its size, form
and design as well as the quantity needed.
A valve block is very suitable for 3D printing
and has a high potential for improvement in
weight, performance, and design freedom
when additively manufactured.

Application of HyperWorks to Develop Human Body Models to Assess Injury Potential for Vulnerable Populations in Vehicle Crashes
The effects of obesity on occupant responses
in frontal collisions were investigated using
the UMTRI whole-body human finite element
models. A modeling approach was developed
and applied that allowed for rapid change of a
baseline human body model into geometries
representing adults with different BMIs without
the need for re-meshing the models.

Student Team H2polit0 of Politecnico of Torino Applied HyperWorks to Reduce Vehicle Weight and Fuel Consumption on Shell Eco Marathon Europe Competition
Student teams from around the world participate in the Shell Eco-marathon (SEM), a unique low energy consumption competition for student teams. Within the competition the teams strive to design, build and drive the most energy-efficient car. In three annual events in Asia, Americas, and Europe, student teams compete on the track to see who goes furthest on the least amount of fuel. The competition evaluates different aspects of the car, the most important of which is of course the energy consumption: the less energy the car needs, the better it will rank.

Climbing the Winner’s Podium with HyperWorks
HyperWorks allows for the option to increase the stiffness of the wheel shell through the use of OptiStruct. By applying HyperWorks to
their composite design and development process the team was able to increase the stiffness of the chosen components by 10 percent while learning how to do a structural layout of carbon fiber composites.

Using HyperWorks to Develop Human Body Models for Vehicle Crash Simulation
Wake Forest Baptist Medical Center is a leading research university in biomedical sciences and bioengineering that provides students and faculty with outstanding opportunities for personal and professional growth.

Minimising Mass and Increasing Durability of a Vehicle Suspension System Using OptiStruct
Gestamp selected Altair to develop a set of custom tools within HyperWorks, eliminating the need for an initial 'trial and error' design loop while reducing mass and increasing durability of a rear twist beam suspension system. The company achieved a reduction in lead time while producing competitive low cost, low mass RTB designs.

FIAT Customer Story
FIAT chose Altair ProductDesign as a partner to perform a pilot project to investigate squeak and rattle. The project focused on studying issues on the FIAT UNO, a vehicle made exclusively for the South American market. Altair ProductDesign suggested that FIAT implement Altair’s ‘Squeak and Rattle Director’ (SNRD), a comprehensive set of services and software automations that rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle in assemblies. With customization from the Altair ProductDesign team, the solution provides a semi-automated approach to determine relative component displacements in the time domain that can lead to undesired noise. A dedicated four day workshop facilitated a fast ramp-up of the NVH team’s knowledge of the SNRD and helped Altair to identify FIAT’s specific design process that the solution could be tailored to.

Fluid - Structure Interaction Analysis and Optimization of an Automotive Component
This paper discusses the behavior of a flexible flap at the rear end of a generic car model under
aerodynamic loads. A strong bidirectional coupling between the flap’s deflection and the flow
field exists which requires this system to be simulated in a coupled fluid-structure manner.

Anadolu Isuzu Increases Truck Safety with HyperWorks Products
Safety Engineer Caner Kara is talking about their usage of Altair products in the design process of trucks and buses at Anadolu Isuzu.


Scania
Scania uses a simulation-driven design process including topology optimization and finite element analysis. This speeds up their design and development process and produces lighter, more efficient components.

Monash Motorsport takes advantage of optimization and additive manufacturing technologies and wins again!
Since their first Australian SAE Student Racing competition in 2000, the Monash Motorsport team has steadily improved the performance of their race car. Recently the students discovered the benefits of combining Altair‘s OptiStruct optimization technology and 3D printing. Based on an initial prototype rear hub design from the 2013 car, the team proceeded to pursue titanium front hubs and uprights to decrease the car’s unsprung mass. This was a tough challenge, since the former design was already made of lightweight aluminum. To tackle this, Monash Motorsport employed Altair’s optimization technology OptiStruct to design and optimize a titanium upright, which was then produced using additive manufacturing technology from CSIRO. As a result, the students were able to reduce the component’s weight by a further 30 percent whilst maintaining the component stiffness and reducing the development time and costs.

AAM
American Axle & Manufacturing employed topology optimization and FEA to redesign an automotive carrier to achieve a weight reduction of 20%.

Radioss Case Study with PSA Peugeot Citroën and Bull
PSA Peugeot Citroën collaborated with Altair, Bull, PRACE and others to perform a study of automotive crash rupture simulations, investigating ways to improve material failure criteria and better predict cracks.

EDAG: Developing Commercial Vehicles Inspired by Nature
As Germany's largest independent engineering
partner to the worldwide automotive industry,
EDAG is continuously seeking for new technology and for innovative processes to streamline vehicle development.

Increasing Robustness and Reliability of a Race Car Engine with AcuSolve
This study is part of Prodrive’s implementation of AcuSolve to enhance its CFD capability after many years of outsourcing these simulations.

HardMarque
HardMarque coupled topology optimization with additive manufacturing to conceptualize and refine the design of a piston. The final piston design is 23.5% lighter than the original design. 

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon
Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

Reducing Weight and Maximising Fuel Efficiency of a Formula Student Car with OptiStruct
Durham University Electric Motorsport (DUEM), are a UK-based team of students who design, build and race electric vehicles. In this project, DUEM wanted to demonstrate how they have applied the latest weight saving technology to achieve a faster, more efficient car by optimising an upright design for multiple load cases. As existing users of the Altair HyperWorks simulation suite, the DUEM team looked to OptiStruct to help meet this challenge.

Simulation Tools: Driving the Future of Design
The Clemson University Deep Orange 3 program introduced future engineers to analysis software, enabling them to develop a novel sports car concept architecture.



By Dr. Paul Venhovens

Concept To Reality Winter 2013 Subscribe to C2R Magazine

BASF Enlightens the Auto Industry
Continuous fiber-reinforced thermoplastic composite and virtual simulation technology enables BASF to develop an innovative and cost-neutral seat pan that is 45% lighter than its predecessor.



By Beverly A. Beckert

Concept To Reality Winter 2013 Subscribe to C2R Magazine

Polaris Reduces Weight of Snowmobile Structures Up to 40% with solidThinking Inspire and OptiStruct
Polaris, based in Roseau, Minn., is a
renowned manufacturer of snowmobiles,
and its Snowmobile Chassis Structures
Group is engaged in design and testing that supports three different platform teams with chassis solutions for each set of requirements. Computer-based design and finite element (FE) analysis are integral parts of the Polaris snowmobile development process, as engineers work to create optimal structures that reduce weight without sacrificing performance.

Simulation: The Connection between Speed and Safety in Racing
Chassis manufacturer relies on simulation
and optimization to develop the fastest
– and safest – race cars on today’s circuits.


By Luca Pignacca

Concept To Reality Summer / Fall 2012 Subscribe to C2R Magazine

Altair BUSolutions
Developing the World’s First Series Hydraulic Hybrid Bus



The Federal Transit Administration (FTA) requires modern transit bus systems to provide more efficient services across America. Currently, U.S. public bus transit authorities are subsidized to meet operating budgets with State and local subsidies exceeding $19 billion per year and Federal subsidies exceed $7 billion per year. The goal of the BUSolutions project is to design and manufacturer a new bus with improved fuel economy, lower emissions and a lower life cycle cost than today’s buses.

HyperWorks helps to improve development processes at F.S. Fehrer Automotive GmbH
F.S. Fehrer Automotive GmbH in Kitzingen is using the HyperWorks Suite to develop seat parts, form cushions and complete vehicle interior systems. The engineers use HyperWorks and especially RADIOSS for static and modal analysis. The seat of a vehicle is the direct and closest connection of the passenger with the automobile. Design and seating comfort play an important role in personalizing the vehicle model and convey the feeling of quality to the passenger. In addition, safety and variability are vital aspects for the development of interior parts of a vehicle.

Putting Simulation Muscle Behind a Sporty Concept Car
Optimization technology delivers innovative suspension design for Alfa Romeo's sleek concept car.

Ford Motor Company: Building an Efficient HPC Infrastructure
The cars, trucks, vans and SUVs that roll off Ford Motor Company assembly lines are safer, quieter, and more comfortable than ever. Many of the intangibles that contribute to Ford quality flow from the innovative use of high performance computing (HPC) techniques. At Ford's Numerically Intensive Computing Department (NIC) in Dearborn, Michigan, engineers run simulations in codes such as NASTRAN and LS-DYNA for predictive analysis of cylinder cooling, wind noise, vibration, ride quality, crashworthiness, durability, and other characteristics that contribute to industry-leading automotive design.

SmartWorks optimizes fleet management at Boyaca
Boyacá has been handling the daily delivery of newspapers and magazines in Spain for more than 35 years. Fulfillment of time schedules is essential for customer satisfaction and late deliveries can result in additional costs. Boyacá needed to have direct real-time information on arrival and departure times at each hub of the distribution chain in order to control costs with the lowest possible investment. Several hundred trucks are used for delivery every day.

Towards Efficient Composite Pressure Vessel Design
Competing future vehicle concepts have drives using clean energy stored in batteries or hydrogen. On-board storage of high-pressure hydrogen gas to supply fuel cells needs weight-efficient pressure vessels utilizing composite materials, that operate safely and reliably under challenging thermo-mechanical service conditions, be affordable and meet standards.

Partnering with the Altair Composites Team, CIKONI identified the benefits of Altair Multiscale Designer™ to increase simulation efficiency by its virtual material characterization to create accurate and reliable material models for structural simulation. They applied Multiscale Designer, Altair OptiStruct and Altair ESAComp interfaced with a third-party filament winding simulation package to handle the simulation process.


Simulation Fosters Stronger Customer Collaboration and Develops New Business
Bental Motion Systems, a member of the Gevasol Group, produces a variety of end applications including motors, alternators, and electrical brakes for the aerospace & defense, and semiconductor industries. To accelerate the design of electric machines while reacting fast to customer specific requirements, Bental uses Altair FluxMotor to enable quick concept exploration including valuable predictions on machine performance, parameters, and productivity feasibility checks.

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe